datasheetbank_Logo
データシート検索エンジンとフリーデータシート

NCP1071 データシートの表示(PDF) - ON Semiconductor

部品番号
コンポーネント説明
一致するリスト
NCP1071 Datasheet PDF : 30 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
NCP1070, NCP1071, NCP1072, NCP1075, NCP1076, NCP1077
Figure 25. The Charge/Discharge Cycle Over a 1 mF VCC Capacitor
As one can see, even if there is auxiliary winding to
provide energy for VCC, it happens that the device is still
biased by DSS during start−up time or some fault mode
when the voltage on auxiliary winding is not ready yet. The
VCC capacitor shall be dimensioned to avoid VCC crosses
VCC(off) level, which stops operation. The DV between
VCC(min) and VCC(off) is 0.4 V. There is no current source to
charge VCC capacitor when driver is on, i.e. drain voltage is
close to zero. Hence the VCC capacitor can be calculated
using
CVCC
w
ICC1Dmax
fOSC @ DV
(eq. 1)
Take the NCP1072 65 kHz device as an example. CVCC
should be above
0.8m @ 72%
59 kHz @ 0.4
A margin that covers the temperature drift and the voltage
drop due to switching inside FET should be considered, and
thus a capacitor above 0.1 mF is appropriate.
The VCC capacitor has only a supply role and its value
does not impact other parameters such as fault duration or
the frequency sweep period for instance. As one can see on
Figure 24, an internal active zener diode, protects the
switcher against lethal VCC runaways. This situation can
occur if the feedback loop optocoupler fails, for instance,
and you would like to protect the converter against an over
voltage event. In that case, the internal current increase
incurred by the VCC rapid growth triggers the over voltage
protection (OVP) circuit and immediately stops the output
pulses for trecovery duration (420 ms typically). Then a new
start−up attempt takes place to check whether the fault has
disappeared or not. The OVP paragraph gives more design
details on this particular section.
Fault Condition – Short−Circuit on VCC
In some fault situations, a short−circuit can purposely
occur between VCC and GND. In high line conditions (VHV
= 370 VDC) the current delivered by the startup device will
seriously increase the junction temperature. For instance,
since Istart1 equals 5 mA (the min corresponds to the highest
Tj), the device would dissipate 370 x 5 m = 1.85 W. To avoid
this situation, the controller includes a novel circuitry made
of two startup levels, Istart1 and Istart2. At power−up, as long
as VCC is below a 2.4 V level, the source delivers Istart2
(around 500 mA typical), then, when VCC reaches 2.4 V, the
source smoothly transitions to Istart1 and delivers its nominal
value. As a result, in case of short−circuit between VCC and
GND, the power dissipation will drop to 370 x 500u =
185 mW. Figure 25 portrays this particular behavior.
The first startup period is calculated by the formula C x V
= I x t, which implies a 1m x 2.4 / 500u = 4.8 ms startup time
for the first sequence. The second sequence is obtained by
toggling the source to 8 mA with a delta V of VCC(on)
VCCTH = 8.2 – 2.4 = 5.8 V, which finally leads to a second
startup time of 1m x 5.8 / 8m = 0.725 ms. The total startup
time becomes 4.8m + 0.725m = 5.525 ms. Please note that
this calculation is approximated by the presence of the knee
in the vicinity of the transition.
www.onsemi.com
15

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]