

SPT7863

10-BIT, 40 MSPS,160 mW A/D CONVERTER

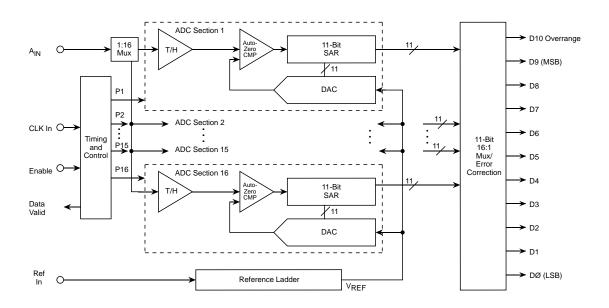
FEATURES

- Monolithic 40 MSPS Converter
- 160 mW Power Dissipation
- · On-Chip Track-and-Hold
- Single +5 V Power Supply
- TTL/CMOS Outputs
- 5 pF Input Capacitance
- Low Cost
- Tri-State Output Buffers
- High ESD Protection: 3,500 V Minimum
- Selectable +3 V or +5 V Logic I/O

APPLICATIONS

- All High-Speed Applications Where Low Power Dissipation is Required
- Video Imaging
- · Medical Imaging
- Radar Receivers
- IR Imaging
- · Digital Communications

GENERAL DESCRIPTION


The SPT7863 is a 10-bit monolithic, low cost, ultralow power analog-to-digital converter capable of minimum word rates of 40 MSPS. The on-chip track-and-hold function assures very good dynamic performance without the need for external components. The input drive requirements are minimized due to the SPT7863's low input capacitance of only 5 pF.

Power dissipation is extremely low at only 160 mW typical at 40 MSPS with a power supply of +5.0 V. The digital outputs

are +3 V or +5 V, and are user selectable. The SPT7863 is pin-compatible with the entire family of SPT 10-bit, CMOS converters (SPT7835/40/50/55/60/61) which simplifies upgrades. The SPT7863 has incorporated proprietary circuit design and CMOS processing technologies to achieve its advanced performance. Inputs and outputs are TTL/CMOS compatible to interface with TTL/CMOS logic systems. Output data format is straight binary.

The SPT7863 is available in 28-lead SOIC and 32-lead small (7 mm square) TQFP packages over the commercial temperature range.

BLOCK DIAGRAM

Signal Processing Technologies, Inc.

ABSOLUTE MAXIMUM RATINGS (Beyond which damage may occur)1 25 °C

	+6 V	Output Digital Outputs10 mA
		Temperature
Input Voltages		Operating Temperature 0 to +70 °C
Analog Input	0.5 V to AV _{DD} +0.5 V	Junction Temperature+175 °C
V _{REF}	0 to AV _{DD}	Lead Temperature, (soldering 10 seconds) +300 °C
CLK Input	V _{DD}	Storage Temperature65 to +150 °C
AV _{DD} - DV _{DD}	±100 mV	•
AGND - DGND	±100 mV	

Note: 1. Operation at any Absolute Maximum Rating is not implied. See Electrical Specifications for proper nominal applied conditions in typical applications.

ELECTRICAL SPECIFICATIONS

 $T_A = T_{MAX}$ to T_{MAX} , $AV_{DD} = DV_{DD} = +5.0$ V, $V_{IN} = 0$ to 4 V, $f_S = 40$ MSPS, $V_{RHS} = 4.0$ V, $V_{RLS} = 0.0$ V, unless otherwise specified.

PARAMETERS	TEST CONDITIONS	TEST LEVEL	MIN	SPT7863 TYP	MAX	UNITS
Resolution			10			Bits
DC Accuracy Integral Nonlinearity Differential Nonlinearity No Missing Codes		VI VI VI	G	±1.0 ±0.5 Guaranteed		LSB LSB
Analog Input Input Voltage Range Input Resistance Input Capacitance Input Bandwidth Offset Gain Error	(Small Signal)	> > > >	V _{RLS} 50 250	5.0 ±2.0 ±0.2	VRHS	V kΩ pF MHz LSB %
Reference Input Resistance Bandwidth Voltage Range VRLS VRHS VRHS - VRLS Δ(VRHF - VRHS)		VI V IV IV V	300 100 0 3.0 1.0	500 150 - - 4.0 90 75	2.0 AV _{DD} 5.0	Ω MHz V V V mV
Reference Settling Time VRHS VRLS		V		15 20		Clock Cycles Clock Cycles
Conversion Characteristics Maximum Conversion Rate Minimum Conversion Rate Pipeline Delay (Latency) Aperture Delay Time Aperture Jitter Time		VI IV IV V	40 2	4.0 30	12	MHz MHz Clock Cycles ns ps(p-p)
Dynamic Performance Effective Number of Bits f _{IN} =3.58 MHz f _{IN} =10 MHz		VI V		9.2 8.7		Bits Bits

ELECTRICAL SPECIFICATIONS

T_A=T_{MAX} to T_{MAX}, AV_{DD}=DV_{DD}=+5.0 V, V_{IN}=0 to 4 V, f_S=40 MSPS, V_{RHS}=4.0 V, V_{RLS}=0.0 V, unless otherwise specified.

PARAMETERS	TEST CONDITIONS	TEST LEVEL	MIN	SPT7863 TYP	MAX	UNITS
Dynamic Performance Signal-to-Noise Ratio (without Harmonics)						
f _{IN} =3.58 MHz f _{IN} =10 MHz		VI V	55	57 54		dB dB
Harmonic Distortion f _{IN} =3.58 MHz f _{IN} =10 MHz Signal-to-Noise and Distortion (SINAD)		VI V	64	67 62		dB dB
f _{IN} =3.58 MHz f _{IN} =10 MHz		VI V	54	57 54		dB dB
Spurious Free Dynamic Range Differential Phase Differential Gain	f _{IN} =3.580 MHz	V V V		70 ±0.3 ±0.3		dB Degree %
Inputs Logic 1 Voltage Logic 0 Voltage Maximum Input Current Low Maximum Input Current High Input Capacitance		VI VI VI VI V	2.0 -10 -10	+5	0.8 +10 +10	V V μΑ μΑ pF
Digital Outputs Logic 1 Voltage Logic 0 Voltage trise trall Output Enable to Data Output Delay	I _{OH} = 0.5 mA I _{OL} = 1.6 mA 15 pF load 15 pF load 20 pF load, T _A = +25 °C 50 pF load over temp.	VI VI V V	3.5	10 10 10 22	0.4	V V ns ns ns ns
Power Supply Requirements Voltages OV _{DD} DV _{DD} AV _{DD} Currents AI _{DD} DI _{DD}		IV IV IV VI	3.0 4.75 4.75	5.0 5.0 17 16	5.0 5.25 5.25 21 21	V V V mA mA
Power Dissipation		VI		160	210	mW

TEST LEVEL TEST PROCEDURE TEST LEVEL CODES All electrical characteristics are subject to the I 100% production tested at the specified temperature. following conditions: Ш 100% production tested at $T_A = +25$ °C, and sample tested at the specified temperatures. All parameters having min/max specifications Ш QA sample tested only at the specified temperatures. are guaranteed. The Test Level column indicates the specific device testing actually per-IV Parameter is guaranteed (but not tested) by design formed during production and Quality Assurand characterization data. ance inspection. Any blank section in the data Parameter is a typical value for information purposes column indicates that the specification is not tested at the specified condition. VI 100% production tested at T_A = +25 °C. Parameter is guaranteed over specified temperature range.

Figure 1A: Timing Diagram 1

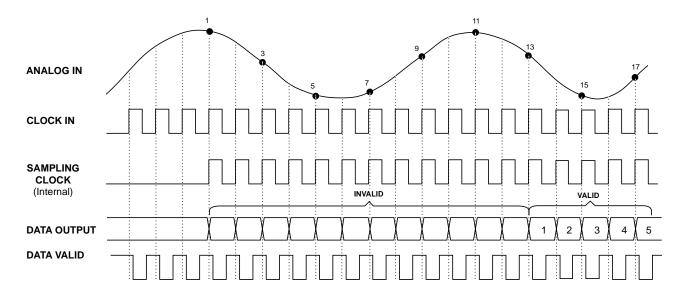
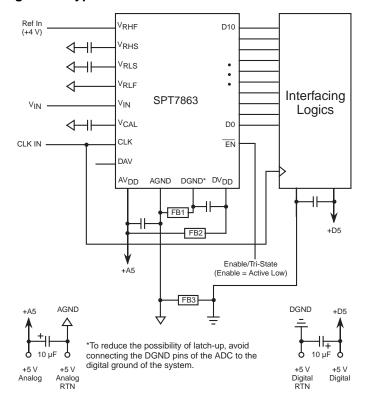


Figure 1B: Timing Diagram 2


Table I - Timing Parameters

DESCRIPTION	PARAMETERS	MIN	TYP	MAX	UNITS
Conversion Time	t _C	tCLK			ns
Clock Period	t _{CLK}	25			ns
Clock High Duty Cycle	t _{CH}	40	50	60	%
Clock Low Duty Cycle	t _{CL}	40	50	60	%
Clock to Output Delay (15 pF Load)	t _{OD}		17		ns
Clock to DAV	t _S		10		ns

TYPICAL INTERFACE CIRCUIT

Very few external components are required to achieve the stated device performance. Figure 1 shows the typical interface requirements when using the SPT7863 in normal circuit operation. The following sections provide descriptions of the major functions and outline critical performance criteria to consider for achieving the optimal device performance.

Figure 1 - Typical Interface Circuit

NOTES: 1) FB3 is to be located as closely to the device as possible.

- 2) There should be no additional connections to the right of FB1 and FB2.
- 3) All capacitors are 0.1 µF surface-mount unless otherwise specified.
- 4) FB1, FB2 and FB3 are 10 µH inductors or ferrite beads.

POWER SUPPLIES AND GROUNDING

SPT suggests that both the digital and the analog supply voltages on the SPT7863 be derived from a single analog supply as shown in figure 1. A separate digital supply should be used for all interface circuitry. SPT suggests using this power supply configuration to prevent a possible latch-up condition on power up.

OPERATING DESCRIPTION

The general architecture for the CMOS ADC is shown in the block diagram. The design contains 16 identical successive approximation ADC sections, all operating in parallel, a 16-phase clock generator, an 11-bit 16:1 digital output multiplexer, correction logic, and a voltage reference generator which provides common reference levels for each ADC section.

The high sample rate is achieved by using multiple SAR ADC sections in parallel, each of which samples the input signal in sequence. Each ADC uses 16 clock cycles to complete a conversion. The clock cycles are allocated as follows:

Table II - Clock Cycles

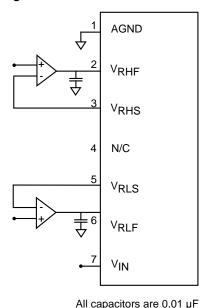
Clock	Operation
1	Reference zero sampling
2	Auto-zero comparison
3	Auto-calibrate comparison
4	Input sample
5-15	11-bit SAR conversion
16	Data transfer

The 16 phase clock, which is derived from the input clock, synchronizes these events. The timing signals for adjacent ADC sections are shifted by one clock cycle so that the analog input is sampled on every cycle of the input clock by exactly one ADC section. After 16 clock periods, the timing cycle repeats. The latency from analog input sample to the corresponding digital output is 12 clock cycles.

- Since only 16 comparators are used, a huge power savings is realized.
- The auto-zero operation is done using a closed loop system that uses multiple samples of the comparators response to a reference zero.
- The auto-calibrate operation, which calibrates the gain
 of the MSB reference and the LSB reference, is also
 done with a closed loop system. Multiple samples of the
 gain error are integrated to produce a calibration voltage for
 each ADC section.
- Capacitive displacement currents, which can induce sampling error, are minimized since only one comparator samples the input during a clock cycle.
- The total input capacitance is very low since sections of the converter which are not sampling the signal are isolated from the input by transmission gates.

VOLTAGE REFERENCE

The SPT7863 requires the use of a single external voltage reference for driving the high side of the reference ladder. It must be within the range of 3 V to 5 V. The lower side of the ladder is typically tied to AGND (0.0 V), but can be run up to 2.0 V with a second reference. The analog input voltage range will track the total voltage difference measured between the ladder sense lines, V_{RHS} and V_{RLS} .


Force and sense taps are provided to ensure accurate and stable setting of the upper and lower ladder sense line voltages across part-to-part and temperature variations. By using the configuration shown in figure 2, offset and gain errors of less than ± 2 LSB can be obtained.

SPT7863

5 4/30/98

Figure 2 - Ladder Force/Sense Circuit

7 iii capacitoro are c.o.i pr

In cases where wider variations in offset and gain can be tolerated, V_{Ref} can be tied directly to V_{RHF} and AGND can be tied directly to V_{RLF} as shown in figure 3. Decouple force and sense lines to AGND with a .01 μF capacitor (chip cap preferred) to minimize high-frequency noise injection. If this simplified configuration is used, the following considerations should be taken into account:

The reference ladder circuit shown in figure 3 is a simplified representation of the actual reference ladder with force and sense taps shown. Due to the actual internal structure of the ladder, the voltage drop from V_{RHF} to V_{RHS} is not equivalent to the voltage drop from V_{RLF} to V_{RLS} .

Typically, the top side voltage drop for V_{RHF} to V_{RHS} will equal:

 $V_{RHF} - V_{RHS} = 2.25 \%$ of $(V_{RHF} - V_{RLF})$ (typical),

and the bottom side voltage drop for V_{RLS} to V_{RLF} will equal:

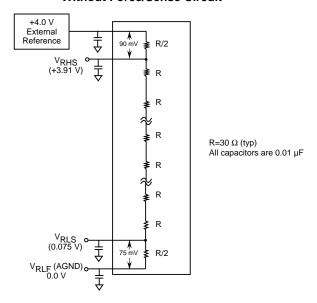

 V_{RLS} - V_{RLF} = 1.9 % of (V_{RHF} - V_{RLF}) (typical).

Figure 3 shows an example of expected voltage drops for a specific case. Vref of 4.0 V is applied to V_{RHF} and V_{RLF} is tied to AGND. A 90 mV drop is seen at V_{RHS} (= 3.91 V) and a 75 mV increase is seen at V_{RLS} (= 0.075 V).

ANALOG INPUT

 V_{IN} is the analog input. The input voltage range is from V_{RLS} to V_{RHS} (typically 4.0 V) and will scale proportionally with respect to the voltage reference. (See voltage reference section.)

Figure 3 - Simplified Reference Ladder Drive Circuit
Without Force/Sense Circuit

The drive requirements for the analog inputs are very minimal when compared to most other converters due to the SPT7863's extremely low input capacitance of only 5 pF and very high input resistance in excess of 50 k Ω .

The analog input should be protected through a series resistor and diode clamping circuit as shown in figure 4.

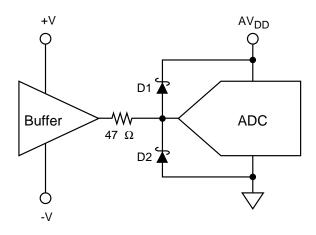
CALIBRATION

The SPT7863 uses an auto calibration scheme to ensure 10-bit accuracy over time and temperature. Gain and offset errors are continually adjusted to 10-bit accuracy during device operation. This process is completely transparent to the user.

Upon power-up, the SPT7863 begins its calibration algorithm. In order to achieve the calibration accuracy required, the offset and gain adjustment step size is a fraction of a 10-bit LSB. Since the calibration algorithm is an oversampling process, a minimum of 10,000 clock cycles are required. This results in a minimum calibration time upon power-up of 250 μsec (for a 40 MHz clock). Once calibrated, the SPT7863 remains calibrated over time and temperature.

Since the calibration cycles are initiated on the rising edge of the clock, the clock must be continuously applied for the SPT7863 to remain in calibration.

INPUT PROTECTION


All I/O pads are protected with an on-chip protection circuit shown in figure 5. This circuit provides ESD robustness to 3.5 kV and prevents latch-up under severe discharge conditions without degrading analog transition times.

SPT7863

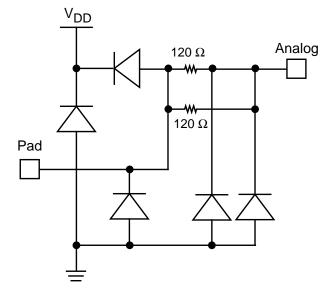

6

Figure 4 - Recommended Input Protection Circuit

D1 = D2 = Hewlett Packard HP5712 or equivalent

Figure 5 - On-Chip Protection Circuit

CLOCK INPUT

The SPT7863 is driven from a single-ended TTL-input clock. Because the pipelined architecture operates on the rising edge of the clock input, the device can operate over a wide range of input clock duty cycles without degrading the dynamic performance.

DIGITAL OUTPUTS

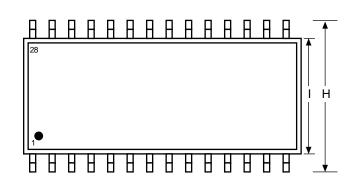
The digital outputs (D0-D10) are driven by a separate supply (OV_{DD}) ranging from +3 V to +5 V. This feature makes it possible to drive the SPT7863's TTL/CMOS-compatible outputs with the user's logic system supply. The format of the output data (D0-D9) is straight binary. (See table III.) The outputs are latched on the rising edge of CLK. These outputs can be switched into a tri-state mode by bringing $\frac{1}{100}$ high.

Table III - Output Data Information

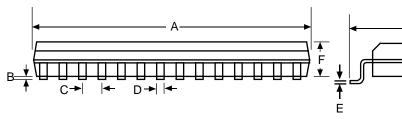
ANALOG INPUT	OVERRANGE D10	OUTPUT CODE D9-D0
+F.S. + 1/2 LSB	1	11 1111 1111
+F.S1/2 LSB	0	11 1111 111Ø
+1/2 F.S.	0	<u> </u>
+1/2 LSB	0	00 0000 000Ø
0.0 V	0	00 0000 0000

(Ø indicates the flickering bit between logic 0 and 1).

OVERRANGE OUTPUT

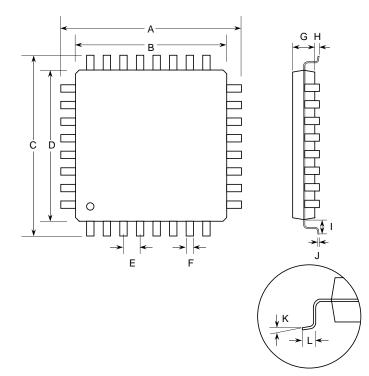

The OVERRANGE OUTPUT (D10) is an indication that the analog input signal has exceeded the positive full scale input voltage by 1 LSB. When this condition occurs, D10 will switch to logic 1. All other data outputs (D0 to D9) will remain at logic 1 as long as D10 remains at logic 1. This feature makes it possible to include the SPT7863 into higher resolution systems.

EVALUATION BOARD

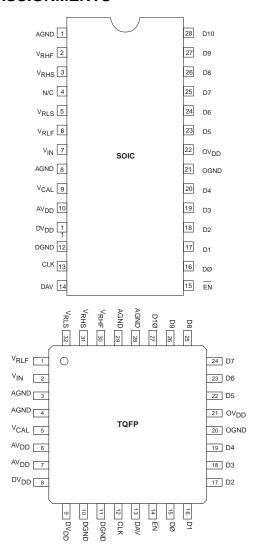

The EB7863 evaluation board is available to aid designers in demonstrating the full performance of the SPT7863. This board includes a reference circuit, clock driver circuit, output data latches and an on-board reconstruction of the digital data. An application note describing the operation of this board as well as information on the testing of the SPT7863 is also available. Contact the factory for price and availability.

PACKAGE OUTLINES

28-Lead SOIC



	INCHES		MILLIN	METERS	
SYMBOL	MIN	MAX	MIN	MAX	
Α	0.696	0.712	17.68	18.08	
В	0.004	0.012	0.10	0.30	
С		.050 typ	0.00	1.27	
D	0.014	0.019	0.36	0.48	
Е	0.009	0.012	0.23	0.30	
F	0.080	0.100	2.03	2.54	
G	0.016	0.050	0.41	1.27	
Н	0.394	0.419	10.01	10.64	
I	0.291	0.299	7.39	7.59	



32-Lead TQFP

	INCHES		MILLIME	TERS
SYMBOL	MIN	MAX	MIN	MAX
Α	0.347	0.355	8.90	9.10
В	0.269	0.277	6.90	7.10
С	0.347	0.355	8.90	9.10
D	0.269	0.277	6.90	7.10
Е	0.027	0.035	0.68	0.89
F	0.012	0.018	0.30	0.45
G	0.053	0.057	1.35	1.45
Н	0.002	0.006	0.05	0.15
I	0.039 typ		1.00 typ	
J	0.004	0.008	0.09	0.20
K	0°	7°	0°	7°
L	0.018	0.029	0.45	0.75

PIN ASSIGNMENTS

PIN FUNCTIONS

Name	Function
AGND	Analog Ground
V _{RHF}	Reference High Force
V _{RHS}	Reference High Sense
V _{RLS}	Reference Low Sense
V _R LF	Reference Low Force
VCAL	Calibration Reference
VIN	Analog Input
AV_{DD}	Analog V _{DD}
DV_DD	Digital V _{DD}
DGND	Digital Ground
CLK	Input Clock f _{CLK} =fs (TTL)
ĒN	Output Enable
D0-9	Tri-State Data Output, (DØ=LSB)
D10	Tri-State Output Overrange
DAV	Data Valid Output
OV _{DD}	Digital Output Supply
OGND	Digital Output Ground

ORDERING INFORMATION

PART NUMBER	TEMPERATURE RANGE	PACKAGE TYPE	
SPT7863SCS	0 to +70 °C	28L SOIC	
SPT7863SCT	0 to +70 °C	32L TQFP	

Signal Processing Technologies, Inc. reserves the right to change products and specifications without notice. Permission is hereby expressly granted to copy this literature for informational purposes only. Copying this material for any other use is strictly prohibited.

Covered by Patent Numbers 5262779 and 5272481.

WARNING - LIFE SUPPORT APPLICATIONS POLICY - SPT products should not be used within Life Support Systems without the specific written consent of SPT. A Life Support System is a product or system intended to support or sustain life which, if it fails, can be reasonably expected to result in significant personal injury or death.

Signal Processing Technologies believes that ultrasonic cleaning of its products may damage the wire bonding, leading to device failure. It is therefore not recommended, and exposure of a device to such a process will void the product warranty.

