Protected Power MOSFET

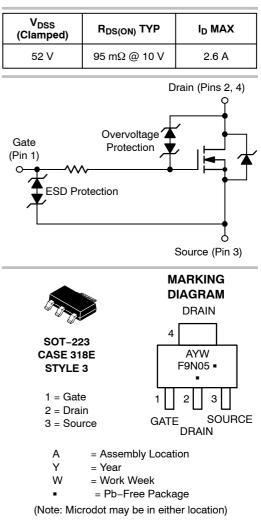
2.6 A, 52 V, N–Channel, Logic Level, Clamped MOSFET w/ ESD Protection

Benefits

- High Energy Capability for Inductive Loads
- Low Switching Noise Generation

Features

- Diode Clamp Between Gate and Source
- ESD Protection HBM 5000 V
- Active Over-Voltage Gate to Drain Clamp
- Scalable to Lower or Higher R_{DS(on)}
- Internal Series Gate Resistance
- These are Pb–Free Devices


Applications

- Automotive and Industrial Markets: Solenoid Drivers, Lamp Drivers, Small Motor Drivers
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes

ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8440STT1G	SOT-223 (Pb-Free)	1000/Tape & Reel
NCV8440STT3G	SOT-223 (Pb-Free)	4000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage Internally Clamped	V _{DSS}	52–59	V
Gate-to-Source Voltage - Continuous	V _{GS}	±15	V
Drain Current – Continuous @ T _A = 25°C – Single Pulse (t _p = 10 $\mu s)$ (Note 1)	I _D I _{DM}	2.6 10	А
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1)	PD	1.69	W
Operating and Storage Temperature Range	T _J , T _{stg}	–55 to 150	°C
Single Pulse Drain–to–Source Avalanche Energy (V _{DD} = 50 V, I _{D(pk)} = 1.17 A, V _{GS} = 10 V, L = 160 mH, R _G = 25 Ω)	E _{AS}	110	mJ
Load Dump Voltage (V_{GS} = 0 and 10 V, R_I = 2.0 Ω , R _L = 9.0 Ω , td = 400 ms)	V _{LD}	60	V
Thermal Resistance, Junction-to-Ambient (Note 1) Junction-to-Ambient (Note 2)	$R_{ heta JA}$ $R_{ heta JA}$	74 169	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8″ from Case for 10 Seconds	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

When surface mounted to a FR4 board using 1" pad size, (Cu area 1.127 in²).
 When surface mounted to a FR4 board using minimum recommended pad size, (Cu area 0.412 in²).

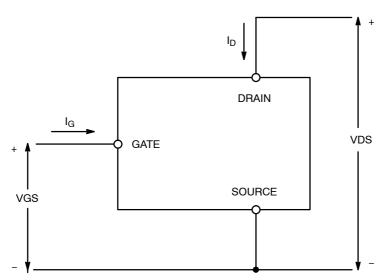


Figure 1. Voltage and Current Convention

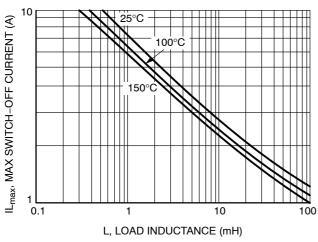
Charac	Symbol	Min	Тур	Max	Unit			
OFF CHARACTERISTICS								
Drain-to-Source Breakdown Voltage (Note 3) ($V_{GS} = 0 V$, $I_D = 1.0 mA$, $T_J = 25^{\circ}C$) ($V_{GS} = 0 V$, $I_D = 1.0 mA$, $T_J = -40^{\circ}C$ to 125°C) (Note 4) Temperature Coefficient (Negative)		V _{(BR)DSS}	52 50.8	55 54 –9.3	59 59.5	V V mV/°C		
Zero Gate Voltage Drain Current (V_{DS} = 40 V, V_{GS} = 0 V) (V_{DS} = 40 V, V_{GS} = 0 V, T_{J} = 125°C)	I _{DSS}			10 25	μΑ			
$ \begin{array}{l} \mbox{Gate-Body Leakage Current} \\ \mbox{(V}_{GS}=\pm 8 \mbox{ V, } \mbox{V}_{DS}=0 \mbox{ V)} \\ \mbox{(V}_{GS}=\pm 14 \mbox{ V, } \mbox{V}_{DS}=0 \mbox{ V)} \end{array} $	I _{GSS}		±35	±10	μΑ			
ON CHARACTERISTICS (Note 3)								
Gate Threshold Voltage (Note 3) $(V_{DS} = V_{GS}, I_D = 100 \ \mu A)$ Threshold Temperature Coefficient (Negative)		V _{GS(th)}	1.1	1.5 -4.1	1.9	V mV/°C		
Static Drain-to-Source On-Resistance (Note 3) ($V_{GS} = 3.5 \text{ V}, I_D = 0.6 \text{ A}$) ($V_{GS} = 4.0 \text{ V}, I_D = 1.5 \text{ A}$) ($V_{GS} = 10 \text{ V}, I_D = 2.6 \text{ A}$)		R _{DS(on)}		135 150 95	180 160 110	mΩ		
Forward Transconductance (Note 3) (V	_{OS} = 15 V, I _D = 2.6 A)	9 _{FS}		3.8		Mhos		
DYNAMIC CHARACTERISTICS		·						
Input Capacitance		C _{iss}		155		pF		
Output Capacitance	V _{DS} = 35 V, V _{GS} = 0 V, f = 10 kHz	C _{oss}		60		1		
Transfer Capacitance		C _{rss}		25		1		
Input Capacitance		C _{iss}		170		pF		
Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 10 kHz	C _{oss}		70		1		
Transfer Capacitance		C _{rss}		30		1		

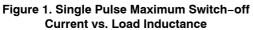
3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

4. Not subject to production testing.
 5. Switching characteristics are independent of operating junction temperatures.

	Symbol	Min	Тур	Max	Unit	
SWITCHING CHARACTERIST	ICS (Note 5)		•			•
Turn-On Delay Time		t _{d(on)}		375		ns
Rise Time	V _{GS} = 4.5 V, V _{DD} = 40 V,	t _r		1525		
Turn–Off Delay Time	$I_{\rm D} = 2.6 \text{ A}, \text{ R}_{\rm D} = 15.4 \Omega$	t _{d(off)}		1530		
Fall Time		t _f		1160		
Turn-On Delay Time		t _{d(on)}		325		ns
Rise Time	V _{GS} = 4.5 V, V _{DD} = 40 V,	t _r		1275		
Turn-Off Delay Time	$I_{\rm D} = 1.0 \text{ A}, \text{ R}_{\rm D} = 40 \Omega$	t _{d(off)}		1860		
Fall Time		t _f		1150		
Turn–On Delay Time		t _{d(on)}		190		ns
Rise Time	V _{GS} = 10 V, V _{DD} = 15 V,	t _r		710		
Turn–Off Delay Time	$I_{\rm D} = 2.6 \text{ A}, \text{ R}_{\rm D} = 5.8 \Omega$	t _{d(off)}		2220		
Fall Time		t _f		1180		
Gate Charge		QT		4.5		nC
	V _{GS} = 4.5 V, V _{DS} = 40 V, I _D = 2.6 A (Note 3)	Q ₁	0.9			
		Q ₂		2.6		
Gate Charge		Q _T		3.9		nC
	V _{GS} = 4.5 V, V _{DS} = 15 V, I _D = 1.5 A (Note 3)	Q ₁		1.0		1
		Q ₂		1.7		1
SOURCE-DRAIN DIODE CHA	RACTERISTICS	•	·	÷		
Forward On-Voltage	I _S = 2.6 A, V _{GS} = 0 V (Note 3) I _S = 2.6 A, V _{GS} = 0 V, T _J = 125°C	V _{SD}		0.81 0.66	1.5	V

Forward On-voltage	$I_{S} = 2.6 \text{ A}, V_{GS} = 0 \text{ V}, T_{J} = 125^{\circ}\text{C}$	VSD	0.66	1.5	v
Reverse Recovery Time		t _{rr}	730		ns
	I _S = 1.5 A, V _{GS} = 0 V, dI _s /dt = 100 A/μs (Note 3)	t _a	200		
		t _b	530		
Reverse Recovery Stored Charge		Q _{RR}	6.3		μC


ESD CHARACTERISTICS (Note 4)


Electro-Static Discharge Capability	Human Body Model (HBM)	ESD	5000		V
	Machine Model (MM)		500		

3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

4. Not subject to production testing.
 5. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

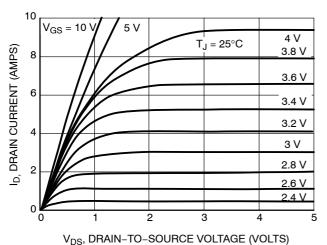


Figure 3. On-State Output Characteristics

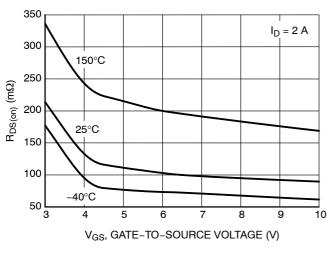


Figure 5. R_{DS(on)} vs. Gate-Source Voltage

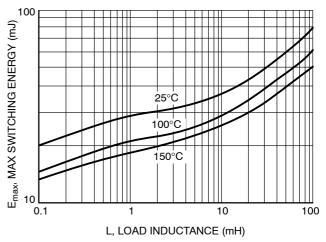
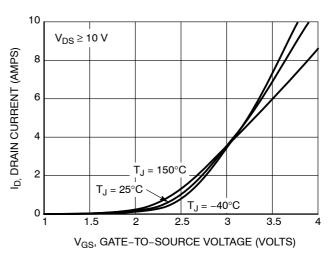
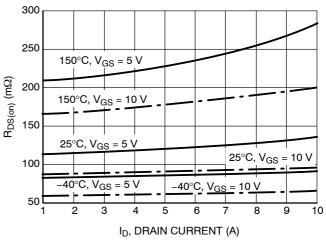
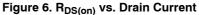
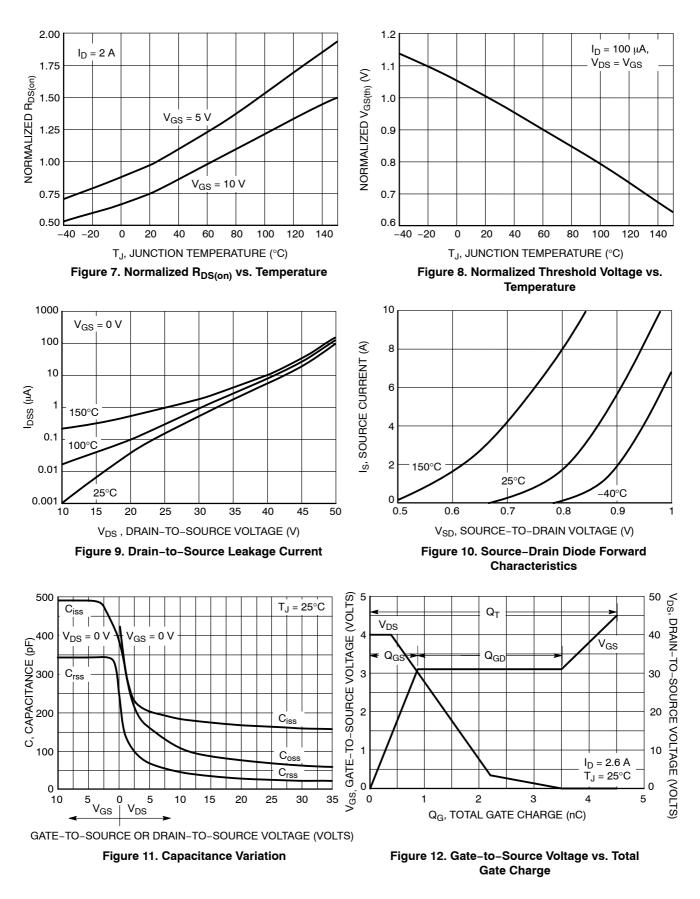
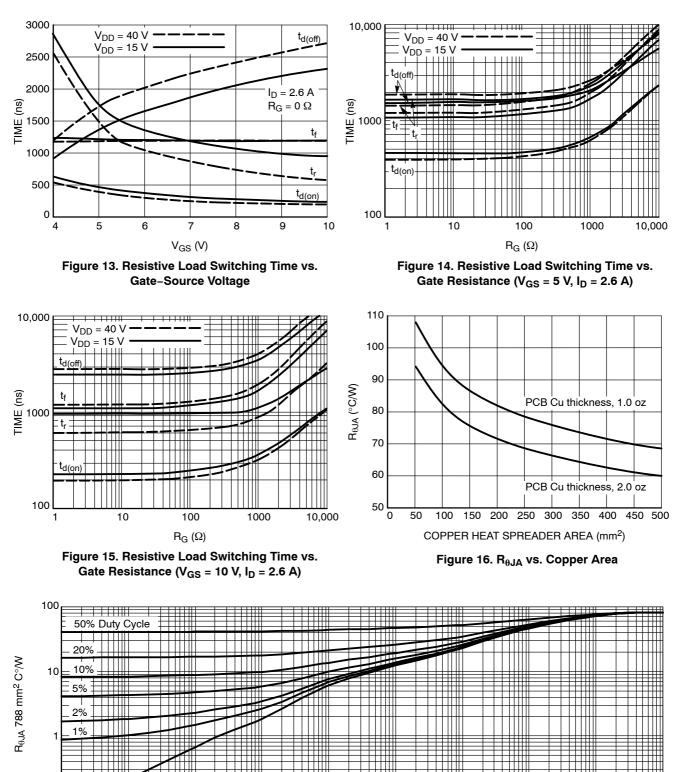


Figure 2. Single Pulse Maximum Switching Energy vs. Load Inductance


Figure 4. Transfer Characteristics

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

http://onsemi.com 7

0.01

PULSE TIME (sec)
Figure 17. Transient Thermal Resistance

0.1

1000

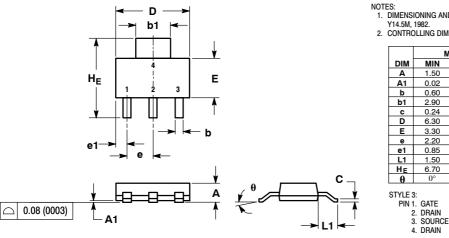
100

10

1

0.001

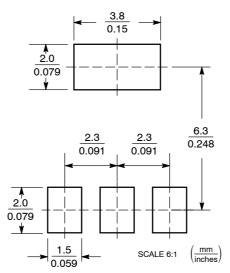
Single Pulse


0.0001

0.1

0.000001 0.00001

PACKAGE DIMENSIONS


SOT-223 (TO-261) CASE 318E-04 ISSUE L

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.63	1.75	0.060	0.064	0.068	
A1	0.02	0.06	0.10	0.001	0.002	0.004	
b	0.60	0.75	0.89	0.024	0.030	0.035	
b1	2.90	3.06	3.20	0.115	0.121	0.126	
С	0.24	0.29	0.35	0.009	0.012	0.014	
D	6.30	6.50	6.70	0.249	0.256	0.263	
E	3.30	3.50	3.70	0.130	0.138	0.145	
е	2.20	2.30	2.40	0.087	0.091	0.094	
e1	0.85	0.94	1.05	0.033	0.037	0.041	
L1	1.50	1.75	2.00	0.060	0.069	0.078	
HE	6.70	7.00	7.30	0.264	0.276	0.287	
θ	0°	-	10°	0°	-	10°	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILC does not convey any license under its patent rights or the rights of others. SCILC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NCV8440/D