8-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The TTL/MSI SN74LS251 is a high speed 8-Input Digital Multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. The LS251 can be used as a universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

- Schottky Process for High Speed
- Multifunction Capability
- On-Chip Select Logic Decoding
- Inverting and Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects

CONNECTION DIAGRAM DIP (TOP VIEW)

PIN NAMES	LOADING (Note a)		
		HIGH	LOW
	Select Inputs	0.5 U.L.	0.25 U.L.
$\mathrm{S}_{0}-\mathrm{S}_{2}$	Output Enable (Active LOW) Inputs	0.5 U.L.	0.25 U.L.
E_{0}	Multiplexer Inputs	0.5 U.L.	0.25 U.L.
$\mathrm{I}_{0}-\mathrm{I}_{7}$	Multiplexer Output	65 U.L.	15 U.L.
Z	Complementary Multiplexer Output	65 U.L.	15 U.L.

N SUFFIX
PLASTIC CASE 648-08

ORDERING INFORMATION

$$
\begin{array}{ll}
\text { SN54LSXXXJ } & \text { Ceramic } \\
\text { SN74LSXXXN } & \text { Plastic } \\
\text { SN74LSXXXDW } & \text { SOIC }
\end{array}
$$

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS251 is a logical implementation of a single pole, 8 -position switch with the switch position controlled by the state of three Select inputs, $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}$. Both assertion and negation outputs are provided. The Output Enable input (EO) is active LOW. When it is activated, the logic function provided at the output is:

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{E}_{\mathrm{O}} \cdot\left(\mathrm{I}_{2} \cdot \overline{\mathrm{~s}}_{0} \cdot \overline{\mathrm{~s}}_{1} \cdot \overline{\mathrm{~s}}_{2}+\mathrm{I}_{1} \cdot \mathrm{~s}_{0} \cdot \overline{\mathrm{~s}}_{1} \cdot \overline{\mathrm{~s}}_{2}+\mathrm{I}_{2} \cdot \overline{\mathrm{~s}}_{0} \cdot \mathrm{~s}_{1}\right. \\
& \mathrm{s}_{2}+\mathrm{I}_{3} \cdot \mathrm{~s}_{0} \cdot \mathrm{~s}_{1} \cdot \mathrm{~s}_{2}+\mathrm{I}_{4} \cdot \mathrm{~s}_{0} \cdot \mathrm{~s}_{1} \cdot \mathrm{~s}_{2}+\mathrm{I}_{5} \cdot \mathrm{~s}_{2} \cdot
\end{aligned}
$$

When the Output Enable is HIGH, both outputs are in the high impedance (high Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3 -state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active LOW portion of the enable voltage.

TRUTH TABLE

E_{0}	S_{2}	S_{1}	S_{0}	I_{0}	I_{1}	I_{2}	I_{3}	14	15	I_{6}	17	Z	Z
H	X	X	X	X	X	X	X	X	X	X	X	(Z)	(Z)
L	L	L	L	L	X	X	X	X	X	X	X	H	L
L	L	L	L	H	X	X	X	X	X	X	X	L	H
L	L	L	H	X	L	X	X	X	X	X	X	H	L
L	L	L	H	X	H	X	X	X	X	X	X	L	H
L	L	H	L	X	X	L	X	X	X	X	X	H	L
L	L	H	L	X	X	H	X	X	X	X	X	L	H
L	L	H	H	X	X	X	L	X	X	X	X	H	L
L	L	H	H	X	X	X	H	X	X	X	X	L	H
L	H	L	L	X	X	X	X	L	X	X	X	H	L
L	H	L	L	X	X	X	X	H	X	X	X	L	H
L	H	L	H	X	X	X	X	X	L	X	X	H	L
L	H	L	H	X	X	X	X	X	H	X	X	L	H
L	H	H	L	X	X	X	X	X	X	L	X	H	L
L	H	H	L	X	X	X	X	X	X	H	X	L	H
L	H	H	H	X	X	X	X	X	X	X	L	H	L
L	H	H	H	X	X	X	X	X	X	X	H	L	H

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Don't Care
(Z) = High impedance (Off)

GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage	4.75	5.0	5.25	V
T_{A}	Operating Ambient Temperature Range	0	25	70	${ }^{\circ} \mathrm{C}$
IOH	Output Current - High			-2.6	mA
IOL	Output Current - Low			24	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
V_{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V_{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
$\mathrm{V}_{\text {IK }}$	Input Clamp Diode Voltage		-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$	
V_{OH}	Output HIGH Voltage	2.4	3.1		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$ per Truth Table	
VOL	Output LOW Voltage		0.25	0.4	V	$\mathrm{l} \mathrm{OL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { per Truth Table } \end{aligned}$
			0.35	0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}$	
lozh	Output Off Current HIGH			20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$	
IOZL	Output Off Current LOW			-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$	
${ }^{\text {IIH }}$	Input HIGH Current			20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$	
				0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$	
IIL	Input LOW Current			-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	
Ios	Short Circuit Current (Note 1)	-30		-130	mA	$V_{C C}=$ MAX	
ICC	Power Supply Current			10	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{E}}=0 \mathrm{~V}$	
				12	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{E}}=4.5 \mathrm{~V}$	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\begin{aligned} & \mathrm{tpLH} \\ & \text { tpHL } \end{aligned}$	Propagation Delay, Select to Z Output		$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	ns	Figure 1	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2.0 \mathrm{k} \Omega \end{aligned}$
	Propagation Delay, Select to Z Output		$\begin{aligned} & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	ns	Figure 2	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay, Data to Z Output		$\begin{aligned} & 10 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	ns	Figure 1	
	Propagation Delay, Data to Z Output		$\begin{aligned} & 17 \\ & 18 \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \end{aligned}$	ns	Figures 2	
$\left\lvert\, \begin{aligned} & \text { tpZH } \\ & \text { tp71 } \end{aligned}\right.$	Output Enable Time to Z Output		$\begin{aligned} & 17 \\ & 24 \end{aligned}$	$\begin{aligned} & 27 \\ & 40 \end{aligned}$	ns	Figures 4, 5	
$\left\lvert\, \begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}\right.$	Output Enable Time to Z Output		$\begin{aligned} & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \end{aligned}$	ns	Figures 3, 5	
$\begin{aligned} & \mathrm{tphZ} \\ & \text { tpLZ } \end{aligned}$	Output Disable Time to Z Output		$\begin{aligned} & 37 \\ & 15 \end{aligned}$	$\begin{aligned} & 55 \\ & 25 \end{aligned}$	ns	Figures 3, 5	$\begin{aligned} & C_{\mathrm{L}}=5.0 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=667 \mathrm{k} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{tPHZ} \\ & \text { tpLZ } \end{aligned}$	Output Disable Time to Z Output		$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	ns	Figures 4, 5	

SN54/74LS251

3-STATE AC WAVEFORMS

Figure 1

Figure 3
0.5 V

Figure 2

Figure 4

Figure 5

Case 648-08 N Suffix
16-Pin Plastic

Case 620-09 J Suffix

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. $751 \mathrm{~B}-01$ IS OBSOLETE, NEW STANDARD 751B-03.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A	9.80	10.00	0.386	0.393	
B	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27		BSC	0.050 BSC	
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. DIMENSION "L" TO CENTER OF LEADS WHEN

FORMED PARALLEL.
DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
6. $648-01$ THRU -07 OBSOLETE, NEW STANDARD $648-01$
648 .

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	18.80	19.55	0.740	0.770
B	6.35	6.85	0.250	0.270
C	3.69	4.44	0.145	0.175
D	0.39	0.53	0.015	0.021
F	1.02	1.77	0.040	0.070
G	2.54 BSC	0.100 BSC		
H	1.27 BS	0.000 BSC		
J	0.21	0.38	0.008	0.015
K	2.80	3.30	0.110	0.130
L	7.50	7.74	0.295	0.305
M	0°	10°	0°	10°
S	0.51	1.01	0.020	0.040

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982 .
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL
4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY.
5. $620-01$ THRU -08 OBSOLETE, NEW STANDARD 620-09.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	19.05	19.55	0.750	0.770
B	6.10	7.36	0.240	0.290
C	-	4.19	-	0.165
D	0.39	0.53	0.015	0.021
E	1.27 BSC		0.050 BSC	
F	1.40	1.77	0.055	0.070
G	2.54 BSC		0.100 BSC	
J	0.23	0.27	0.009	0.011
K	-	5.08	-	0.200
L	7.62 BSC		0.300 BSC	
M	0°	15°	0°	15°
N	0.39	0.88	0.015	0.035

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and ' $\boldsymbol{\mu}$, are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

